Stable, Oscillatory Viscous Profiles of Weak, non-Lax Shocks in Systems of Stiff Balance Laws
نویسنده
چکیده
منابع مشابه
Stable, Oscillatory Viscous Profiles of Weak Shocks in Systems of Stiff Balance Laws
This paper is devoted to a phenomenon in hyperbolic balance laws, first described by Fiedler and Liebscher [2], which is similar in spirit to the Turing instability. The combination of two individually stabilising effects can lead to quite rich dynamical behaviour, like instabilities, oscillations, or pattern formation. Our problem is composed of two ingredients. First, we have a strictly hyper...
متن کاملViscous Limits for strong shocks of one-dimensional systems of conservation laws
We consider a piecewise smooth solution of a one-dimensional hyperbolic system of conservation laws with a single noncharacteristic Lax shock. We show that it is a zero dissipation limit assuming that there exist linearly stable viscous profiles associated with the discontinuities. In particular, following the approach of [7], we replace the smallness condition obtained by energy methods in [6]...
متن کاملMulti-dimensional Stability of Lax Shocks in Hyperbolic-elliptic Coupled Systems
We study nonlinear asymptotic stability of small–amplitude Lax shocks in a model consisting of a system of multi–dimensional conservation laws coupled with an elliptic system. Such a model can be found in context of dynamics of a gas in presence of radiation. Our main result asserts that the standard uniform Evans stability condition implies nonlinear stability. The main analysis is based on th...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملNonlinear stability of time-periodic viscous shocks
In order to understand the nonlinear stability of many types of time-periodic travelling waves on unbounded domains, one must overcome two main difficulties: the presence of embedded neutral eigenvalues and the time-dependence of the associated linear operator. This problem is studied in the context of timeperiodic Lax shocks in systems of viscous conservation laws. Using spatial dynamics and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001